M1.6 seen

> May be on diagram

$$
\begin{aligned}
& \tan 70= \frac{h}{(\text { their } 6) \div 2} \\
& \text { oe, } x \text { being an equal side of isosceles triangle } \\
& \sin 20=\frac{3}{x} \\
& \cos 70=\frac{3}{x} \\
& \frac{6}{\sin 40}=\frac{x}{\sin 70}
\end{aligned}
$$

$(h=)[8.2,8.3]$

$$
[8.7,8.8] \quad \text { eg } 8.77
$$

$\frac{1}{2} \times$ their $6 \times$ their h

$$
\begin{aligned}
& \frac{1}{2} \times \text { their } 6 \times \text { their } 8.77 \times \sin 70 \\
& \text { or } \frac{1}{2} \times \text { their } 8.77^{2} \times \sin 40
\end{aligned}
$$

[24.3, 24.9]

M2. $\tan 35=\frac{x}{40}$ oe

$$
\frac{40}{\sin 55}=\frac{x}{\sin 35}
$$

$40 \tan 35$ oe
or 28

$$
\frac{40 \sin 35}{\sin 55}
$$

their $28 .(\ldots)+1.8$
29.8...
29.8 or 30
ft is for any answer given to 2 s.f. or 3 s.f. if no evidence of incorrect rounding.

B1ft
[5]

M3.tan identified
If hypotenuse used must see
$\frac{16}{\cos 31}=18.6(\ldots)$ or 18.7
or $\frac{16}{\sin 59}=18.6(\ldots)$ or 18.7
$\tan 31=\frac{h}{16}$
or $\frac{h}{\sin 31}=\frac{16}{\sin (90-31)}$

> oe
> $h^{2}+16^{2}=$ their 18.6^{2}
> or $h^{2}=$ their $18.6^{2}-16^{2}$
> $\frac{\mathrm{~h}}{\text { or } \sin 31}=\frac{\text { their } 18.6}{(\sin 90)}$

